Precision measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ decay at NA48/2 and search for CP violation

Andrea Bizzeti University of Modena and Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA48/2 collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

MENU2010 – Williamsburg, Virginia, U.S.A. – May 31, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$ decay rates

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

CP violation searches

Conclusions

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay rates

CP violation searches

Conclusions

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つへで

The NA48/2 beams

- Simultaneous [$P = (60 \pm 3)$ GeV/c] K^+ and K^- beams \Rightarrow large charge symmetrization of experimental conditions
- Beams coincide within $\sim 1 \text{ mm}$ along the 114 m decay volume.
- Flux ratio $K^+/K^- \sim 1.8$.

The NA48/2 detectors

► LKr electromagnetic calorimeter: quasi-homogeneous, high granularity $\sigma[M(\pi^{\pm}\pi^{0}\pi^{0})] = 1.4 \text{ MeV}/c^{2}$

> • Magnetic spectrometer: 4 DCH + dipole magnet $\sigma[M(3\pi^{\pm})] = 1.7 \text{ MeV/}c^2$

 \Rightarrow e/ π discrimination (E/p)

 Scintillator hodoscope for charged fast trigger: σ(t) = 150 ps

(日) (四) (문) (문) (문)

- hadron calorimeter
 - muon counters
- photon vetoes

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay rates

CP violation searches

Conclusions

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Theory

Two sources of γ radiation:

Inner Bremsstrahlung (IB) and Direct Emission (DE)

Two kinematic variables:

$$T_{\pi}^{*} = \pi^{\pm}$$
 kinetic energy
in K^{\pm} rest frame

$$W^2 = \frac{(p_\pi \cdot p_\gamma)(p_K \cdot p_\gamma)}{m_K^2 m_\pi^2}$$

After integrating on T_{π}^* :

$$\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (IB) \\ + 2m_K^2 m_\pi^2 \cos(\pm\phi + \delta_1^1 - \delta_0^2) X_E W^2 & \Leftarrow (INT) \\ + m_K^4 m_\pi^4 \left(|X_E|^2 + |X_M|^2 \right) W^4 \end{bmatrix} \quad \Leftarrow (DE)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\begin{split} K^{\pm} &\to \pi^{\pm} \pi^{0} \gamma : \text{Theory} \\ \frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (\text{IB}) \\ &+ 2m_{K}^{2}m_{\pi}^{2}\cos(\pm\phi + \delta_{1}^{1} - \delta_{0}^{2}) X_{E} W^{2} & \Leftarrow (\text{INT}) \\ &+ m_{K}^{4}m_{\pi}^{4} \left(|X_{E}|^{2} + |X_{M}|^{2} \right) W^{4} \end{bmatrix} & \Leftarrow (\text{DE}) \end{split}$$

- IB is known from $K^{\pm} \to \pi^{\pm}\pi^{0}$ (Low theorem) + QED corrections \Rightarrow dominant, although suppressed by $\Delta I = 1/2$ rule
- DE amplitude contains two terms [$O(p^4)$ ChPT]:
 - ► magnetic dipole X_M with two contributions: – reducible Wess-Zumino-Witten functional (~ 260 GeV⁻⁴) – direct (non known)
 - electric dipole X_E : no prediction in ChPT

INT is interference between **IB** and electric DE (X_E) amplitudes

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\begin{split} K^{\pm} &\to \pi^{\pm} \pi^{0} \gamma : \text{Theory} \\ \frac{d\Gamma^{\pm}}{dW} &= \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (\text{IB}) \\ &+ 2m_{K}^{2}m_{\pi}^{2}\cos(\pm\phi + \delta_{1}^{1} - \delta_{0}^{2}) X_{E} W^{2} & \Leftarrow (\text{INT}) \\ &+ m_{K}^{4}m_{\pi}^{4} \left(|X_{E}|^{2} + |X_{M}|^{2} \right) W^{4} \end{bmatrix} & \Leftarrow (\text{DE}) \end{split}$$

Monte Carlo W-distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Previous measurements

- Kinematic range 55 MeV $< T_{\gamma}^* < 90$ MeV
- Photon mistagging probability > 10%
- Assumption: INT = 0

So far no interference nor CP violation observed.

• E787: INT / IB =
$$(-0.4 \pm 1.6)$$
 %

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma : T_{\pi}^*$ range

But... this excludes most of DE events.

(日) (四) (문) (문) (문)

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma : T_{\pi}^*$ range

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay rates

CP violation searches

Conclusions

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Data sample

New NA48/2 measurement:

- Both K^+ and K^- in the beam (\Rightarrow CPV check possible)
- Enlarged T_{π}^* region: $0 < T_{\pi}^* < 80 \text{ MeV}$
- Background < 0.01% (mainly π[±]π⁰π⁰)
- γ mistagging probability < 0.1%

Total $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ data sample:

- More than 1 million events
- ► For the fit: restrict to 0.2 < W < 0.9 and $E_{\gamma} > 5$ GeV \Rightarrow still 600 000 $\pi^{\pm}\pi^{0}\gamma$ candidates in the fit

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Fit techniques

► **Poissonian Maximum Likelyhood Fit** in bins of W^2 Correct for acceptance with MC Data(i) = $N_0[(1 - \alpha - \beta) \cdot \text{IB}_{MC}(i) + \alpha \cdot \text{INT}_{MC}(i) + \beta \cdot \text{DE}_{MC}(i)]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 ○○○

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Fit Results

Fit with the "Maximum Likelyhood" method:

 $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Polynomial fit

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 のへで

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Fit with no Interference term

Fit with INT = 0:

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- 1

 \Rightarrow Clear disagreement with INT = 0 hypothesis!

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Final results

Final NA48/2 results on $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ fractions:

Frac(DE) = $(3.19 \pm 0.16) \cdot 10^{-2}$ Frac(INT) = $(-2.21 \pm 0.41) \cdot 10^{-2}$

Correlation: $\rho = -0.93$

(日) (四) (문) (문) (문)

 $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Extraction of X_E and X_M

Approximations for extracting X_E and X_M :

$$\bullet \phi = 0$$
$$\bullet \cos(\delta_1^1 - \delta_0^2) = \cos 6.5^0 \approx 1$$

Magnetic and electric components (first measurement):

$$X_E = (-24 \pm 4_{\text{stat}} \pm 4_{\text{syst}}) \text{ GeV}^{-4}$$

 $X_M = (254 \pm 11_{\text{stat}} \pm 11_{\text{syst}}) \text{ GeV}^{-4}$

WZW reducible anomaly predictions: $X_M \approx 260 \text{ GeV}^{-4}$

 \Rightarrow NA48/2 X_M measurement points to WZW reducible anomaly only

・ロト ・四ト ・ヨト ・ 臣

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay rates

CP violation searches

Conclusions

 $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: CP violation studies

$$\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma^{\pm}_{IB}}{dW} [1 + 2m_K^2 m_\pi^2 \cos(\pm\phi + \delta_1^1 - \delta_0^2) X_E W^2 + m_K^4 m_\pi^4 (|X_E|^2 + |X_M|^2] W^4$$

$$\blacktriangleright \phi \neq 0 \Rightarrow \Gamma(K^+ \to \pi^+ \pi^0 \gamma) \neq \Gamma(K^- \to \pi^- \pi^0 \gamma)$$

- SM prediction on asymmetry: $2 \cdot 10^{-6} \sim 10^{-5}$ for 50 MeV < E_{γ}^* < 170 MeV.
- Possible SUSY contributions can push the asymmetry up to 10⁻⁴ in some W regions.
- Two possible measurements:
 - Asymmetry in the total rate \Rightarrow needs normalization ($K_{3\pi}$)
 - Asymmetry in the Dalitz plot \Rightarrow *W* spectrum

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: CP violation studies

For CP asymmetry analysis: remove cuts on W range and $E_{\gamma}^{min} \Rightarrow 1.08$ million events for CPV analysis.

Measurement of rate asymmetry:

$$A_{N} = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}} = \frac{N_{\pi^{+}\pi^{0}\gamma} - R \cdot N_{\pi^{-}\pi^{0}\gamma}}{N_{\pi^{+}\pi^{0}\gamma} + R \cdot N_{\pi^{-}\pi^{0}\gamma}}$$

with $R = N_{K^{+}}/N_{K^{-}} = 1.7798(4)$ from $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$
$$\bigcup$$
$$A_{N} = (0.0 \pm 1.0_{\text{stat}} \pm 0.6_{\text{syst}}) \cdot 10^{-3}$$
$$A_{N} < 1.5 \cdot 10^{-3} \quad (90\% \text{ CL})$$

 \Rightarrow First limit on $\sin(\phi)$:

 $\sin(\phi) = -0.01 \pm 0.43$, $|\sin(\phi)| < 0.56$ (90% CL)

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: CP violation studies

Fit of asymmetry in W spectrum:

No CP asymmetry observed in $K^{\pm}
ightarrow \pi^{\pm} \pi^{0} \gamma$!

The $K^{\pm} \rightarrow \pi^{+}\pi^{-}\gamma$ decay

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay rates

CP violation searches

Conclusions

Conclusions

- More than 1 million $K^{\pm} \rightarrow \pi^{+}\pi^{0}\gamma$ events with tiny background
- First observation and measurement of interference between IB and DE amplitudes
- ► $X_E = (-24 \pm 4_{\text{stat}} \pm 4_{\text{syst}}) \text{ GeV}^{-4}$ measured for the first time
- Measured $X_M = (-24 \pm 4_{\text{stat}} \pm 4_{\text{syst}}) \text{ GeV}^{-4}$ consistent with WZW reducible anomaly only
- ► $\mathcal{O}(10^{-3})$ limits on direct CP violation in $K^{\pm} \to \pi^{\pm} \pi^{0} \gamma$ decays

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► May 2010: paper accepted for publication in EPJ C